Oceanic Mantle & Crust Fm

Sun & Dasgupta, 2019 EPSL

Sun, C.^ & Dasgupta, R. (2019). Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth and Planetary Science Letters 506: 38-52. doi:10.1016/j.epsl.2018.10.028

Ding & Dasgupta, 2018 JPet

Ding, S.* & Dasgupta, R. (2018). Sulfur inventory of ocean island basalt source regions constrained by modeling the fate of sulfide during decompression melting of a heterogeneous mantle. Journal of Petrology 59: 1281-1308. doi:10.1093/petrology/egy061

Eguchi & Dasgupta, 2018 CG

Eguchi, J.* & Dasgupta, R. (2018). A CO2 solubility model for silicate melts from fluid saturation to graphite or diamond saturation. Chemical Geology 487: 23-38. doi:10.1016/j.chemgeo.2018.04.012

Ding et al., 2018 GCA

Ding, S.*, Hough, T.', Dasgupta, R. (2018). New high pressure experiments on sulfide saturation of high-FeO* basalts with variable TiO2 contents – Implications for the sulfur inventory of the lunar interior. Geochimica et Cosmochimica Acta 222, 319-339. doi:10.1016/j.gca.2017.10.025

Eguchi & Dasgupta, 2017 CMP

Eguchi, J.* & Dasgupta, R. (2017). CO2 content of andesitic melts at graphite saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite. Contributions to Mineralogy and Petrology 172, 12. doi:10.1007/s00410-017-1330-8

Ding & Dasgupta, 2017 EPSL

Ding, S.* & Dasgupta, R. (2017). The fate of sulfide during decompression melting of peridotite – implications for sulfur inventory of the MORB-source depleted upper mantle. Earth and Planetary Science Letters 459, 183-195. doi:10.1016/j.epsl.2016.11.020

Mallik et al., 2016 GCA

Mallik, A.*, Dasgupta, R.Tsuno, K.^ & Nelson, J.' (2016). Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones. Geochimica et Cosmochimica Acta 195, 226-243. doi:10.1016/j.gca.2016.08.018

Le Roux et al., 2015 AM

Le Roux, V.^, Dasgupta, R. & Lee, C-T. A. (2015). Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting. American Mineralogist 100, 2533-2544. doi:10.2138/am-2015-5215

Garapic et al., 2015 AM

Garapić, G., Mallik, A.*, Dasgupta, R., & Jackson, M. G. (2015). Petrologic character of high 3He/4He mantle – Primitive, depleted, or re-enriched? American Mineralogist 100, 2066-2081. doi:10.2138/am-2015-5154

Mallik et al., 2015 CMP

Mallik, A.*, Nelson, J.' & Dasgupta, R. (2015). Partial melting of fertile peridotite fluxed by a hydrous rhyolite at 2-3 GPa: Implications for mantle wedge hybridization by sediment melt and generation of ultra-potassic magmas in convergent margins. Contributions to Mineralogy and Petrology 169, 1-24. doi:10.1007/s00410-015-1139-2

Mallik & Dasgupta 2014 G-cubed

Mallik, A.* & Dasgupta, R. (2014). Effect of variable CO2 on eclogite-derived andesite-lherzolite reaction at 3 GPa - Implications for mantle source characteristics of alkalic ocean island basalts. Geochemistry, Geophysics, Geosystems 15, 1533-1557. doi:10.1002/2014GC005251

Mallik & Dasgupta, 2013 JPet

Mallik, A.* & Dasgupta, R. (2013). Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. Journal of Petrology 54, 2267-2300. doi:10.1093/petrology/egt047

Gerbode & Dasgupta, 2010 JPet

Gerbode, C.+ & Dasgupta, R. (2010). Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa and genesis of HIMU ocean island basalts. Journal of Petrology 51, 2067-2088. doi:10.1093/petrology/egq049